Revisiting Neural Models for Hospital Readmission: A Replication and
Extension Study

Christopher Hynes, Felipe Oliveira

I. ABSTRACT

N this project, we replicate Xiao et al. (2018), who

proposed the CONTENT model for hospital readmission
prediction and claimed it outperforms state-of-the-art
baselines. However, we find that the reported performance
gains are not statistically significant. We reimplemented the
CONTENT model and the GRU benchmark in PyTorch and
evaluated them on the same synthetic dataset. Our results
show no significant difference in performance under the
original setup. To extend the work, we introduced a grid
search for hyperparameter tuning. With this optimization,
CONTENT outperforms the baseline, supporting the model’s
potential under improved training conditions (p < 0.0001).

Link to video - |Google Drive
Link to Public Github Repo - Github

II. INTRODUCTION

Hospital readmissions have been a substantial challenge
for hospitals due to their frequent occurrence, high costs,
and negative impact on patient health. In the United States,
for example, about 17.6% of hospital-admitted patients are
readmitted within 30 days, making up about $17.9 billion in
annual Medicare spending—with 76% of these readmissions
being avoidable. Traditional approaches to predict readmission
typically use manually engineered features from electronic
health records (EHRs) and simple machine learning models.
However, these methods struggle to capture the complex,
heterogeneous, and dynamic nature of medical data.

The paper, "Readmission prediction via deep contextual
embedding of clinical concepts,” introduces CONTENT, a
deep learning model designed to predict 30-day hospital
readmission for Congestive Heart Failure (CHF) patients (Xiao
et al.,, 2018). CONTENT combines Gated Recurring Unit
(GRU) and topic modeling on EHRs, using both short-term
medical events and long-term history of patient data to create
patient similarity representations that help improve prediction
accuracy. This has allowed healthcare providers to better
identify high-risk patients and find interventions to reduce
unnecessary readmissions.

CONTENT was evaluated using real-world EHR data from
a cohort of 5,393 CHF patients, including information on dis-
eases, lab tests, and medication codes. The model had higher
predictive accuracy (PR-AUC of 0.3894+0.0153) compared
to other state-of-the-art models (best baseline PR-AUC was
0.3862+0.0136). This can help hospitals understand underlying
phenotypes that lead to CHF readmission and prepare for
these events accordingly. As a result patients can receive better
care and hospitals will have lower costs with better allocated
resources, potentially saving lives.

ITII. SCOPE OF REPRODUCIBILITY

Our goal was not only to reproduce the readmission pre-
diction performance of the CONTENT model, but also to ex-
plore potential improvements in the model’s implementation.
Specifically, we tested the following hypotheses:

o« Model Reimplementation and Performance Valida-
tion: The original CONTENT implementation used
Theano, an outdated and discontinued framework. We
tested if translating the model to PyTorch would still
have the claimed performance improvement (PR-AUC of
0.3894 + 0.0153) over the next-best baseline GRU model
(PR-AUC was 0.3862 £ 0.0136).

— Reimplement the CONTENT architecture in PyTorch

— Reimplement the GRU architecture in PyTorch

— Compare their performance to the results reported in
Xiao et al. (2018)

« Improving Hyperparameter Optimization: The authors
mention optimizing hyperparameters on validation data
but do not clearly specify their method. We tested if we
could further improve model performance with a custom
grid search.

— Create a grid search to explore hyperparameter combi-
nations

— Compare the CONTENT model’s ROC-AUC obtained
using our custom grid search against the parameters
and performance reported in Xiao et al. (2018)

« Assessment of Statistical Significance in Original Re-
sults: In reviewing the original results table presented in
Xiao et al. (2018), we noticed that the reported improve-
ments were potentially not statistically significant. The
paper does not include any statistical tests or measures
to support the claim of superior performance.

— Run 30 independent trials (up from 10) of the CON-
TENT and GRU models to increase statistical power

— Perform statistical testing on the differences in perfor-
mance

IV. METHODOLOGY
Dataset Descriptions

The authors use a real and a synthetic dataset. The real
dataset includes EHR of 5,393 congestive heart failure (CHF)
patients. Input features are binary encoded disease, lab test,
and medication codes indicating presence/absence per Visit.
Each visit is treated as a set of simultaneous events represented
by a binary vector. The authors did not publish this dataset
(likely due to confidentiality concerns), so we experimented
with the published synthetic dataset (found here) created to
reproduce the claimed results.

https://drive.google.com/file/d/1yDUb_nxSgmJiSwsgZUbIxX0tETGr2XJa/view?usp=sharing
https://github.gatech.edu/foliveira8/BD4H-project/tree/main
https://journals.plos.org/plosone/article/file?type=supplementary&id=10.1371/journal.pone.0195024.s001

GRU

V; € {0,1}¢ hy
A\
Q
Logistic

L — Ve
ety Regression

p e N0}

B
WsL, + by

u
=< e =Ned — 0
logo

®

\ASX }f Wyl + by
S \3@ Recognition
Qg,\’ qg,\’ Network

Fig. 1: CONTENT Model Architecture (Xiao et al., 2018).
This illustrates the two-branch, hybrid CONTENT model. This
image comes from Figure 2 in their original paper.

The synthetic dataset is simulated from a real world patient
dataset. They randomly select 30% to 50% of visits from
each original patient record, drop the rest, and shuffle patient
indices. Each new patient record is then randomly paired with
another, aligning the second record’s event times to the first.
The combined result is a single synthetic patient record that
contains 3,000 patients and 239,936 visits, with an average
of 80 visits and 228 clinical events per patient. There are
618 unique event codes. The label distribution is imbalanced,
with 54,427 occurrences of readmitted patients (29.34%) and
185,509 non-readmitted (70.64%).

For data processing, the authors apply three steps: 1) they
keep only inpatient-hospital visits, flagging each visit 1 if
the next inpatient admission occurs within 30 days, else O;
2) they remove overly frequent “stop-word” medical events,
and map the remaining words to unique indices; 3) for every
patient they create a nested list of indices (representing
medical events) that occurred in each visit (i.e., docs[i] =
[[medevent_indices_dayl], [medevent_indices_day2], ...])
, allowing for the model to pick up on temporal patterns
when predicting readmission at each time step. To match the
original setup, we then split the dataset into 2,000 patients
for training, 500 for validation, and 500 for testing.

Model Description

The CONTENT model can be understood as a language
model. The entire patient cohort is a corpus: every patient is a
document, each hospital visit is a paragraph, and the clinical
codes recorded on a given day are the “words” (medical
events) that appear together. In this analogy a patient’s record
becomes a sequence of paragraphs, while all codes within a
single visit are treated as occurring simultaneously.

The model is composed of a “GRU branch” and a “Recog-
nition Network branch” (Figure 1). A GRU processes the
visit sequence and produces hidden states h=(h1,...,hs). The
Recognition Network branch calculates a separate latent vector
#, which summarizes the patient’s overall clinical context. The
predicted 30-day readmission probabilities y=(y1,...,yn) are
generated by combining the local information in ht with the
global information in 6.

The baseline GRU model strips away this global-context

branch and relies solely on the sequential GRU branch. Train-
ing therefore reduces to minimizing binary cross-entropy on
the GRU’s logits. Using this model as a baseline allows us
to measure the difference in performance due to including
long-term context vector § in 30-day readmission prediction.

Below we describe each building block of both models in
the order it is applied:

o CONTENT architecture:
— GRU Branch:

* Code-embedding layer (Linear (490 —
100))—compresses a sparse 490-dimensional
bag-of-words (medical events) into a dense 100-D
vector for dimensionality reduction. Pre-trained
with a custom Word2Vec matrix via Gensim.

* Local-context GRU (GRU (100 — 200))—inputs
the sequence of code embeddings and outputs a
200-D hidden state h; for each daily visit, capturing
both short- and long-term medical events.

— Recognition Network Branch:

* Nonlinear Dense layers (Linear (490 — 200)
— ReLU — Linear (200 — 200) —
ReLU)—transforms the raw 490-D visit vector into
a nonlinear 200-D representation.

% u and logo? layers (Linear (200 — 50)
each)—map dense features to the mean and
log-variance of a 50-D Gaussian for smooth latent-
space embedding.

* ThetaLayer (Linear (100 — 50))—uses g and
log 0% to sample a logit vector, then applies soft-
max to produce the patient topic vector 6.

* Topic layer B (Linear (490 — 50))—projects
the current day’s medical indices into the 50-D
topic space; the elementwise product B(x) ® 0 is
averaged to yield a scalar topic score, adding global
context to the visit-level prediction.

* Output layer (Linear (200 — 1))—combines the
GRU hidden state h; with the topic score, then
applies a sigmoid to compute the readmission prob-
ability.

¢ GRU Architecture:

— Local-context GRU (GRU (100 — 200))—processes
daily code embeddings into a 200-D hidden state h;,
capturing short-term temporal patterns.

— Output layer (Linear (200 —+ 1) + sigmoid)—maps
h; to a readmission probability. Unlike CONTENT,
this model relies solely on the GRU’s internal memory
without a global context vector.

Training Objectives

CONTENT is optimized by maximizing the evidence lower
bound (ELBO) loss function, which is essentially adding the
binary cross-entropy (BCE) loss to the KL divergence regular-
izer (See “Training” Section for more details). The GRU base-
line however optimizes only the pure BCE classification loss.

CONTENT — Training vs Validation Loss

0.42
0.41
0.40

—e— Training Loss
035 Validation Loss

2 4 6 8 10
Epoch

Fig. 2: Training and validation loss curves for CONTENT
across 10 epochs. The model becomes overfit to the training
data after the second epoch.

Both models share identical optimization settings (Adam with
default 3-values, gradient clipping, single-patient batches) and
are trained for six epochs on validation ROC-AUC, with each
experiment repeated ten times to yield robust mean + SD
performance estimates.

V. TRAINING
Methods

CONTENT and GRU models are instantiated and optimized
with Adam (learning rate 0.001, 57 = 0.9,8: = 0.999)
plus gradient clipping at 100. For each training batch we 1)
zero the gradients, 2) forward-pass to compute predictions
and for CONTENT the KL term, 3) compute masked binary
cross-entropy loss (plus KL), 4) back-propagate, 5) clip gradi-
ents, and 6) step the optimizer. We record per-epoch training
loss and save topic vectors.

CONTENT is trained with the objective function of maxi-
mizing the variational evidence lower bound (ELBO):

KL(q(6) | N'(0,1))
MaxVisitLength

The first term of the loss function is the binary cross-entropy
between true and predicted labels, and the second is the KL
divergence that regularizes the latent topics. No additional
weighting was reported, so both terms contribute equally. The
baseline GRU minimizes binary cross-entropy alone.

The original experiment trained each model for 6 epochs
and repeated the process 10 times. We initially trained the
original model for 10 epochs and observed that validation
loss began increasing after epoch 2 (Figure 2), indicating
overfitting. To address this, we trained each model for only
2 epochs and used the saved computation to run 30 trials
per model. This provided more statistical power to detect
differences between models and test the authors’ claims.
Increasing the number of trials reduced the standard error of
our PR-AUC estimates and allowed us to leverage the central
limit theorem for more reliable statistical comparison.

Training the CONTENT model also required training a
separate Word2Vec model using the Gensim library to obtain
490 vectors of 100-D, each representing a medical event word
found in the synthetic EHR data. The output Word2Vec matrix
initializes a pre-trained weight matrix of the code-embedding

L = BCE(p,y) +

Method Source PR-AUC ROC-AUC ACC
CONTENT Xiao et al., 2018 | 0.6011+£0.0191 0.6886+0.0074 0.6934+0.0090
GRU Xiao et al., 2018 | 0.5929+0.0100 | 0.6881+0.0048 | 0.6856+0.0082
CONTENT Replication 0.6391+0.0025 | 0.7970+0.0014 | 0.8342+0.0021
CONTENT w/o Replication 0.6404+0.0022 0.7985+0.0019 0.8355+0.0017
Word2Vec

GRU Replication 0.6401+0.0017 0.7979+0.0013 0.8356+0.0008

TABLE I: Averages and standard deviations of performance
metrics over 30 trials (2 epochs each). The original results
use the authors’ hyperparameters, 10 trials, and 6 epochs.
“CONTENT w/o Word2Vec” denotes ablation of pre-trained
embeddings, with random initialization instead.

layer in the GRU branch. Computing this was trivial, taking
only 4.5 seconds. However, the computation may become
more expensive on a larger real-world dataset or with more
complex settings (e.g., larger vectors).

The network is not particularly computationally demanding
to train, but without CUDA support, training can be time-
consuming, especially with so many trials. To expedite the
process, we utilized Google Colab’s free T4 GPU. With the
original paper’s parameters, the average runtime per epoch was
approximately 22 seconds for CONTENT and 18 seconds for
the GRU. With the tuned parameters, the runtime was reduced
to 10 seconds per epoch for CONTENT and 6 seconds for
GRU, respectively. The total GPU runtime for both models
was 46 minutes.

VI. EVALUATION

The original paper compares model performance using PR-
AUC, ROC-AUC, and accuracy. We report the same metrics,
using PR-AUC as our primary evaluation metric due to the im-
balanced nature of the dataset and the importance of correctly
identifying readmission cases. While accuracy can sometimes
overstate performance by favoring the majority class, we
include it here to align with the evaluation approach used by
the original authors. PR-AUC provides a better measure of
performance in identifying at-risk patients.

VII. RESULTS

Table 1 presents the means and standard deviations across
30 trials for both models on the test data, using the original
experiment’s hyperparameters.

CONTENT without Word2Vec initialization achieved the
highest performance metrics by a small margin, but the num-
bers are too close to draw strong conclusions. Interestingly,
CONTENT performed significantly better without Word2Vec
initialization than with it based on a difference of means test
(p = 0.0367), potentially indicating issues with our Word2Vec
embeddings. This was the only statistically significant differ-
ence observed between the three configurations. Overall, we
find no evidence that CONTENT meaningfully outperforms
the GRU baseline.

Our performance metrics were universally much higher than
those reported in the original paper on the synthetic data,

despite using the same model architecture. There are several
possible reasons for this discrepancy:

1) PyTorch vs. Theano: We used PyTorch to implement
both models, whereas the original paper used Theano.
Differences in default behaviors or even numerical
precision and stability could have subtly impacted
training dynamics and final performance.

2) Synthetic data differences: We may be using a
different version of the synthetic data than the authors.
While the synthetic dataset was not included in their
GitHub repository, they hosted a data file alongside
their paper on plos.org, an academic journal website. It
is possible that the data has been updated or modified
since publication.

3) Implementation variation: Despite our efforts to faith-
fully replicate the model architecture, our reimplemen-
tation may differ from the original in ways that either
improved performance (e.g., more stable training) or
introduced issues (e.g., data leakage). Similarly, it is
possible the original implementation contained ineffi-
ciencies or overlooked optimizations that limited its
performance.

Next, we used LLLMs to brainstorm potential extensions and
ablations. To make the prompts more effective, we prompted it
to generate multiple ideas based on its analysis of the original
paper. This approach allowed us to explore several relevant
options, which we could then test and select from. The LLM
proposed ideas such as incorporating side information and
handling missing data—approaches that were not feasible due
to the lack of access to the real dataset.

It also suggested architectural changes, such as using al-
ternative RNNs. We tested several modifications, including
replacing the GRU with an LSTM, adding batch normaliza-
tion and dropout, and experimenting with different activation
functions. We tested these changes both individually and in
combination, but all led to worse performance.

Another suggestion was hyperparameter tuning—the au-
thors mention using the validation data to optimize model
parameters but do not provide any details about how this was
done. We found no evidence of a systematic approach to tuning
in their paper or code, so to improve the replicability and
performance of the model, we added functionality for a grid
search. This extension also facilitates further model extensions
or ablations by providing a clear and systematic method for
hyperparameter optimization.

We choose to optimize hyperparameters to maximize PR-
AUC, as the primary goal of the model is to identify the
positive case of readmission, which is much rarer than the
negative class. We found that performance did not change
significantly with additional training epochs, so we opted to
use only 1 epoch for the initial search. This choice allowed us
to more efficiently explore hyperparameters beyond the depth
of training, ensuring a broader search for optimal settings.

Since the original paper provides limited detail on how
the Word2Vec embeddings were trained, we used the same

Method Tuning PR-AUC ROC-AUC ACC
CONTENT Xiao etal., 2018 | 0.6391+0.0025 0.7970+0.0014 0.8342+0.0021
CONTENT Tuned (Grid) 0.6464+0.0022 0.8026+0.0014 0.8368+0.0013
CONTENT w/o | Xiao etal., 2018 | 0.6404+0.0022 | 0.7985+0.0019 | 0.8355+0.0017
Word2Vec

CONTENT w/o Tuned (Grid) 0.6406+0.0018 0.7990+0.0013 0.8358+0.0011
Word2Vec

GRU Xiao etal., 2018 | 0.6401+0.0017 | 0.7979+0.0013 | 0.8356+0.0008
GRU Tuned (Grid) 0.6391+0.0025 0.797+0.0014 0.8342+0.0021

TABLE II: Averages and standard deviations of performance
metrics over 30 trials (using tuned hyperparameters: 2 epochs
per trial). The paper results use the authors’ hyperparameters,
10 trials, and 6 epochs. “CONTENT w/o Word2Vec” denotes
ablation of pre-trained embeddings, with random initialization
instead.

Word2Vec embeddings we had already trained, with 100-
dimensional vectors, and avoided retraining them or varying
their parameters. We fixed the embedding size at 100, consis-
tent with the authors’ implementation, and focused our tuning
efforts on each model’s own hyperparameters, including batch
size, hidden size, learning rate, and number of topics (relevant
to CONTENT only).

Given the increased computational cost of a grid search,
we limited the initial run to a single trial per configuration to
keep training times reasonable. Based on the results of that
run, we selected several top-performing configurations and re-
tested them using five trials and two epochs, again evaluating
on the validation set. The test set metrics are reported in Table
2. Specifically, we found that decreasing CONTENT’s hidden
size to 200 and increasing the number of topics to 150, along
with decreasing the GRU’s hidden size to 200 and increasing
the learning rate to 0.005, yielded the best results.

With these optimized settings, full CONTENT has the
highest performance metrics. On PR-AUC, it significantly
outperforms both the GRU (p <0.0001) and CONTENT with-
out Word2Vec initialization (p <0.0001). This suggests that
CONTENT’s original underperformance may have been due to
suboptimal hyperparameter choices rather than the architecture
itself.

VIII. DISCUSSION

Certain omissions prevent exact replication. The authors do
not include the pre-trained Word2Vec embeddings used to train
their model (or the procedure to train them). Additionally,
the real-world CHF dataset referenced in the paper is not
available, so we could not replicate the original experiments
that evaluated model performance on real EHR data.

Despite the omission of the real-world dataset, we were able
to partially reproduce the experiment on the synthetic data,
which is available. The paper and code provide enough detail
to replicate the CONTENT model architecture. We trained new
Word2Vec embeddings on the synthetic data, which, while
structurally similar, may lack the nuance and variability of
real-world text and fail to capture key patterns in the real-
world data.

Regarding the claim that “the proposed model outperforms
state-of-the-art methods,” the reproducibility of the benchmark
models is limited:

o« Word2Vec + LR: The paper provides the Word2Vec
embedding size (100) but does not specify the logistic
regression implementation.

e Med2Vec + LR: No details are given on the Med2Vec
model or pre-trained embeddings, nor on the logistic
regression implementation.

e GRU: Parameters such as hidden size (200) and training
settings (Adam optimizer, learning rate 0.001, batch size
1) may be inferred from the CONTENT model’s GRU
branch, but are not explicitly reported.

e« GRU + Word2Vec: Information on the Word2Vec
embeddings and their integration with the GRU model
is limited.

o RETAIN: Only a citation of the RETAIN paper is pro-
vided, with no implementation details from the authors.

The GRU was the only model we felt reasonably con-
fident replicating to match the authors’ setup. While even
that implementation lacked full transparency, it offered more
reproducible detail than the others. Notably, this GRU baseline
was the second-best performing model in the original paper
(after the proposed model), making it a reasonable choice for
comparison.

Even if the benchmark implementations were fully repli-
cable, the performance gains reported by the authors are not
statistically significant. On the real-world data, a difference of
means test between CONTENT’s PR-AUC (0.3984 + 0.0153)
and GRU’s (0.3862 + 0.0136) yields a p-value of 0.6271.
Similarly, on the synthetic dataset, CONTENT achieves a
PR-AUC of 0.6011 + 0.0191 compared to GRU’s 0.5929 +
0.0100, with a corresponding p-value of 0.2447. The results
from our initial experiment support the observation that, under
the original hyperparameter setup, there is no statistically
significant difference between CONTENT and the benchmark
GRU model in terms of PR-AUC. However, after applying
a grid search to find optimal hyperparameters, the full CON-
TENT model significantly outperformed both the GRU and the
CONTENT variant using Word2Vec initialization. Notably, it
achieved this while training in roughly half the time. In an
extension of the original paper’s results, we demonstrate the
statistical significance of this improvement.

This suggests that the limited performance we initially
observed may have been due to suboptimal hyperparameter
settings in our reimplementation. The original paper’s config-
uration may not have transferred cleanly to our version of the
model or dataset. At the same time, it’s also possible that the
original implementation itself was not fully optimized.

Notably, performance gains in our extension occurred only
in the full CONTENT model using Word2Vec. In our opti-
mized configuration, the number of topics increased from 50

to 150, possibly compensating for issues in how our Word2Vec
embeddings were trained or integrated. This may suggest
that the synergy between embeddings and topic modeling is
sensitive to training conditions and must be carefully tuned.

In summary, our findings partially support the authors’
claims. While we were able to replicate the CONTENT ar-
chitecture and observed superior performance after optimizing
hyperparameters, the original setup did not yield statistically
significant improvements over the GRU baseline. Additionally,
the authors’ own reported results lacked statistical significance,
further weakening the strength of the claim. These findings
suggest that CONTENT has potential under the right condi-
tions, but its performance is highly sensitive to implementation
details and parameter tuning.

Improving reproducibility would require clearer documenta-
tion of benchmark implementations, hyperparameter selection,
access to or guidance on training Word2Vec embeddings, and
greater transparency in the original experimental setup. With-
out these, the claim that CONTENT consistently outperforms
state-of-the-art models remains only partially substantiated.

IX. AUTHORS’ CONTRIBUTIONS

Christopher Hynes

o Implemented data pre-processing and evaluation func-
tionalities.

« Implemented the benchmark GRU model.

o Added support for GRU in all existing functionalities.

o Trained Word2Vec embeddings from synthetic EHR data.

« Conducted extensive hyper-parameter tuning (topic count,
hidden size, learning rate, etc.) using Felipe’s grid search.

« Ran statistical checks on results to choose optimal hyper-
parameters for CONTENT and GRU.

o Tested architectural variations—e.g., LSTM layers and
LeakyReLU activations.

o Completed 30-trial replication runs for all models with
the tuned hyperparameters.

« Conducted statistical testing on the original and replicated
results to verify performance differences.

o Wrote Abstract, Training, Evaluation, Results, Discus-
sion, and maintained the running project task list.

Felipe Oliveira

o Implemented the CONTENT model.

« Implemented the training loop.

o Established the GitHub repository, conda environment
YAML, and parallel notebooks for local and Colab exe-
cution, ensuring smooth reproducibility.

« Implemented improved Gensim Word2Vec training

e Added a PR-AUC-driven grid-search module to tune
hyperparameters using the validation set.

o Automated training/validation loss logging, generated
over-fitting curves.

o Computed label-distribution statistics.

o Completed 30-trial replication runs for all models with
the paper parameters.

o Wrote the Introduction, Scope of Reproducibility, and
Methodology.

« Moved the report into the LaTeX template.

REFERENCES

[1] Xiao, C., Ma, T., Dieng, A. B., Blei, D. M., & Wang, F. (2018, April 9). Readmission prediction via deep contextual embedding of clinical concepts.
PloS one. https://pmc.ncbi.nlm.nih.gov/articles/PMC5890980/

https://pmc.ncbi.nlm.nih.gov/articles/PMC5890980/

Appendix

DATA PROCESSING

First prompt:

I have a healthcare dataset in a .txt format that includes patient visit data. I also have vocab and stop word
files. Can you help me write code to:

Unzip and load the data
Build a vocabulary excluding rare words and stop words
Convert the raw visit sequences into numerical tensors for a GRU-based model

el S

Save the processed data into train/validation/test .pkl files
First output:

import os

import pickle

import zipfile

from collections import Counter, defaultdict

import torch

1. Unzip and load data
defunzip data(zip path, extract to):
with zipfile.ZipFile(zip_path, 't') as zip_ref:

zip_ref.extractall(extract to)

def'load txt file(filepath):
with open(filepath, 'r') as f:

return [line.strip() for line in f]

2. Build vocabulary (excluding rare words + stop words)

def build_vocab(sequences, stop_words, min_freq=5):

word_counts = Counter()
for seq in sequences:
tokens = seq.split()

word_counts.update(tokens)

vocab = {
word for word, count in word_counts.items()

if count >= min_freq and word not in stop_words

word2idx = {word: idx + 1 for idx, word in enumerate(sorted(vocab))} # idx 0 = PAD
word2idx['<PAD>"] =0

return word2idx

3. Convert sequences to tensors
def convert to tensor(sequences, word2idx, max_len=None):
tensor_data = []
for seq in sequences:
tokens = seq.split()
indices = [word2idx.get(token, 0) for token in tokens] # Unknowns — PAD (or add <UNK> later)
if max_len:
indices = indices[:max_len]
indices +=[0] * (max_len - len(indices)) # Pad
tensor_data.append(torch.tensor(indices, dtype=torch.long))

return tensor_data

4. Save data

def save splits(data, split ratio=(0.7, 0.15, 0.15), output_dir="processed"):
os.makedirs(output_dir, exist ok=True)
total = len(data)
train_end = int(split_ratio[0] * total)

val_end = train_end + int(split_ratio[1] * total)

splits = {
'train.pkl': data[:train_end],
'val.pkl': data[train_end:val end],

'test.pkl': data[val end:]

for fname, d in splits.items():
with open(os.path.join(output dir, fname), 'wb') as f:
pickle.dump(d, f)

Discussion:

The LLM’s (ChatGPT 4o) initial response provided a good starting point, but ultimately wasn’t very
helpful in processing the data. While the general steps aligned with what we expected from the prompt,
the response didn’t account for the complexity of our data structure or the specifics of the CONTENT
model architecture.

This was due to a gap in our initial prompt—we didn’t mention the structure of the data or clarify how we
expected the raw visit data to be transformed. We were aiming to replicate the authors’ processing steps,
which required a very specific approach. It took us 14 additional prompts, along with referencing the
authors’ original code, to understand and follow their logic closely and arrive at the final working version.

MOoODEL IMPLEMENTATION

First Prompt:

[am trying to replicate the CONTENT model for EHR data. It uses a GRU followed by a variational topic
layer. Can you help implement this model in PyTorch, including KL divergence regularization?

First Qutput:
Assumptions:

- Input shape: [batch_size, sequence length, vocab_size] (multi-hot vectors per timestep).

- Output: Binary classification per patient.

- Topic modeling is done using a Gaussian latent space with a softmax to get topic proportions (like
a VAE).

Model Architecture Overview:

- GRU for visit-level temporal representation.

- Mean and log-variance layers from final GRU hidden state.
- Reparameterization trick to sample z ~ N(mu, sigma).

- Softmax on z to get topic distribution theta.

- Linear layer to map theta to output prediction.

- KL divergence term computed during forward pass.

PyTorch Code:
import torch
import torch.nn as nn

import torch.nn.functional as F

class ThetaLayer(nn.Module):
def init_ (self, hidden dim, topic_dim):
super(). init_ ()
self.fc_mu = nn.Linear(hidden dim, topic_dim)
self.fc_logsigma = nn.Linear(hidden dim, topic_dim)

self.kl term = 0.0 # KL divergence (used during training)

def forward(self, h):

mu = self.fc_mu(h)

log sigma = self.fc_logsigma(h)
eps = torch.randn_like(mu)
z=mu + torch.exp(0.5 * log_sigma) * eps

theta = F.softmax(z, dim=1)

KL divergence between N(mu, sigma) and N(0,1)
kl=-0.5 * torch.sum(1 + log_sigma - mu.pow(2) - log_sigma.exp(), dim=1)
self.kl term = kl.mean()

return theta

class ContentModel(nn.Module):
def init_ (self, input dim, hidden dim, topic_dim):
super(). _init_ ()
self.rnn = nn.GRU(input_dim, hidden dim, batch_first=True)
self.theta layer = ThetaLayer(hidden dim, topic_dim)

self.output_layer = nn.Linear(topic_dim, 1)

def forward(self, x, mask=None):
_, h_n=self.rnn(x) #h n:[1, B, H]
h n=h n.squeeze(0) #h n: [B, H]
theta = self.theta layer(h n) #[B, T]
logits = self.output layer(theta) #[B, 1]
preds = torch.sigmoid(logits).squeeze(1) # [B]

return preds, h_n, theta

@property
defkl term(self):

return self.theta layer.kl term

Loss Function:

def compute loss(preds, y_true, mask, kl term):
bce elem = F.binary cross_entropy(preds, y_true, reduction="none")
bece = (bce elem * mask).sum() / mask.sum()

return bee + kl_term

Let me know your: input_dim (i.e. size of your vocabulary / concept space), hidden dim for GRU, and
topic_dim (number of topics), and I can plug those in or modify things like dropout, embedding layers, or
patient-level pooling if needed.

Discussion:

The first LLM answer was somewhat helpful because it included the main architectural elements of the
CONTENT model, such as KL divergence regularization, a variational topic layer with the
reparameterization method, and a GRU encoder. But because my question was unstructured and
primarily consisted of code fragments, the LLM mistook it as a continuation job and made small
formatting and logical mistakes such as redundant return statements and unclear inputs. A more detailed
prompt outlining the model structure and intended implementation from the original paper would have
guided the LLM to provide a better output. Nevertheless, the LLM helped me create a functional
baseline, which I then improved over 12 more prompts.

TRAINING LoopP
First Prompt:

Can you write a training loop in PyTorch that logs average loss per epoch and evaluates the model using
PR-AUC on a validation set?

First Output:

Sure! Here's a PyTorch training loop that logs average loss per epoch and evaluates the model using
Precision-Recall AUC (PR-AUC) on a validation set:

import torch
import torch.nn.functional as F
from sklearn.metrics import average precision_score

from tqdm import tqdm

def train(model, train_loader, val loader, optimizer, config):
best val pr auc=0
for epoch in range(config.num_epochs):
model.train()
total loss = 0.0

total examples =0

for x_batch, y_batch, mask batch in tqdm(train_loader, desc=f"Epoch
{epoch+1}/{config.num_epochs}"):

x_batch = x_batch.to(config.device)
y_batch =y batch.to(config.device)

mask batch = mask batch.to(config.device)

optimizer.zero grad()

preds, * = model(x_batch, mask batch) # adjust based on your model's output
bce elem = F.binary cross_entropy(preds, y_batch, reduction="none")

bce = (bce elem * mask batch).sum() / mask batch.sum()

loss = bece + getattr(model, "kl _term", 0.0) # if model has KL term
loss.backward()

torch.nn.utils.clip_grad norm_(model.parameters(), 100)

optimizer.step()

total loss += loss.item() * mask batch.sum().item()

total examples += mask batch.sum().item()

avg loss = total loss / total examples

val_pr_auc = evaluate pr_auc(model, val loader, config)

print(f"Epoch {epoch+1}: Avg Loss = {avg loss:.4f}, Val PR-AUC = {val pr auc:.4f}")

if val pr_auc > best val pr auc:
best val pr auc =val pr auc

Optional: save model checkpoint

print(f'Best Validation PR-AUC: {best val pr auc:.4f}")

return best _val pr auc

def evaluate pr auc(model, loader, config):
model.eval()

all_true, all pred =[], []

with torch.no_grad():
for x_batch, y_batch, mask batch in loader:
x_batch = x_batch.to(config.device)

y_batch =y batch.to(config.device)

mask batch = mask batch.to(config.device)

preds, * = model(x_batch, mask batch)
all true.append(y_batch.cpu().numpy())

all pred.append(preds.cpu().numpy())

true = torch.cat([torch.tensor(t) for t in all_true]).numpy().flatten()

pred = torch.cat([torch.tensor(p) for p in all pred]).numpy().flatten()

return average precision_score(true, pred)

Assumptions:

- train_loader and val loader yield (x_batch, y_batch, mask batch)
- Model's output is (preds, ...), and preds are probabilities in [0,1]
- config includes num epochs and device

Let me know if you'd like it customized for a specific model structure (e.g. CONTENT model, RNN, etc.)
or if you're using weighted BCE, multi-label output, etc.

Discussion:

A general-purpose PyTorch training loop that calculated PR-AUC on the validation set and monitored
average loss per epoch was given by the first LLM response. Although it made sense and served as a good
foundation, it ignored the unique architecture and output format of the CONTENT model, which
incorporates KL divergence and produces latent vectors like theta and h_n. Additionally, it didn't cover
how to gather intermediate vectors (such as theta) for each epoch or how to use m_batch to mask out
padding. The output wasn't enough for specialized models, but it was useful for scaffolding the high-level
training structure. Later I had to make changes to the loop in order to handle model-specific training
(CONTENT vs GRU), add KL loss, and save latent representations for later use. This took 13 more
prompts to achieve.

EVALUATION

First prompt:

I'm building a PyTorch model for hospital readmission prediction based on sequences of patient visits. [
now need help evaluating my model on test data. Can you help me write functions to:

1. Run my model on a test dataset and collect predictions
2. Calculate relevant metrics for a binary classification task like this

My model outputs probabilities between 0 and 1 for each element in a sequence, and I'm only interested in
the non-padded elements. I'm using DataLoader that gives me x, y, and a mask tensor.

First output:
Absolutely, I can help you with that! Based on your setup:
e You're working with sequences (likely padded).
e Your model outputs probabilities per time step.
e You’re using a mask tensor to identify which elements are not padding.

e [t’s a binary classification task.

Here’s a clean and modular way to:
1. Run inference on your test data
2. Collect predictions and targets (filtered by the mask)

3. Calculate common metrics: accuracy, precision, recall, F1 score, ROC AUC

Step 1: Run Model and Collect Predictions

import torch

def evaluate model(model, dataloader, device):
model.eval()
all preds =[]
all probs =[]

all targets =[]

with torch.no_grad():

for X, y, mask in dataloader:
X, y, mask = x.to(device), y.to(device), mask.to(device)

probs = model(x) # output: [batch, seq_len], probabilities

Filter out padded elements
probs_masked = probs[mask.bool()]
y_masked = y[mask.bool()]

preds_masked = (probs_masked >= 0.5).long()

all_probs.append(probs_masked.cpu())
all preds.append(preds masked.cpu())

all targets.append(y masked.cpu())

Concatenate all batches

all probs = torch.cat(all_probs)
all preds = torch.cat(all preds)
all targets = torch.cat(all_targets)

return all_probs.numpy(), all_preds.numpy(), all targets.numpy()

Step 2: Compute Metrics
from sklearn.metrics import accuracy score, precision_score, recall score, f1 _score, roc_auc_score
def compute metrics(probs, preds, targets):
metrics = {
'Accuracy': accuracy score(targets, preds),
'Precision': precision_score(targets, preds),

'Recall': recall_score(targets, preds),

'F1 Score': f1 _score(targets, preds),
'ROC AUC": roc_auc_score(targets, probs)
b

return metrics

Example Usage

Assuming your model, test loader, and device are already set
probs, preds, targets = evaluate_ model(model, test loader, device)
metrics = compute metrics(probs, preds, targets)

for name, value in metrics.items():

print(f'{name}: {value:.4f}")

Let me know if you want to support:

sequence-level metrics (e.g., did this patient ever get readmitted?)
saving predictions for later analysis

thresholds other than 0.5

handling multi-label/multi-class cases

Happy to help tweak it!
Discussion:

It took a total of five prompts to get the evaluation working as expected. The first prompt already got
quite a bit right—the output was relevant and helpful. It correctly handled masking, predicted probabilities,
applied a threshold to convert them into binary classifications, and computed most of the performance
metrics we were interested in. This makes sense: once you have the model’s predictions, using them for
evaluation is relatively straightforward, so it’s not surprising that an LLM might handle that part well.

However, we left out some important details in the initial prompt. As a result, it didn’t include PR-AUC
as a metric, and it also didn’t compute the loss, which we wanted to track throughout evaluation.
Additionally, we overlooked the need for model-specific logic—the prompt didn’t differentiate between
CONTENT and GRU models. This became an issue later: we initially got the evaluation working for
CONTENT, but had to revise the code afterward to add support for GRU.

